SPI通信也是众多通信协议中比较重要的一种通信协议,由摩托罗拉公司开发,十分值得学习。

SPI 通信

简介

  • SPI(Serial Peripheral Interface)是由Motorola公司开发的一种通用数据总线

  • 四根通信线:SCK(Serial Clock)、MOSI(Master Output Slave Input)、MISO(Master Input Slave Output)、SS(Slave Select)

  • 同步,全双工

  • 支持总线挂载多设备(一主多从)

硬件电路

  • 所有SPI设备的SCK、MOSI、MISO分别连在一起

  • 主机另外引出多条SS控制线,分别接到各从机的SS引脚

  • 输出引脚配置为推挽输出,输入引脚配置为浮空或上拉输入

image-20250210160008655

移位示意图

image-20250210172804308

W25Q64

简介

  1. W25Qxx系列是一种低成本、小型化、使用简单的非易失性存储器,常应用于数据存储、字库存储、固件程序存储等场景

  2. 存储介质:Nor Flash(闪存)

  3. 时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI)

  4. 存储容量(24位地址):

    W25Q40: 4Mbit / 512KByte

    W25Q80: 8Mbit / 1MByte

    W25Q16: 16Mbit / 2MByte

    W25Q32: 32Mbit / 4MByte

    W25Q64: 64Mbit / 8MByte

    W25Q128: 128Mbit / 16MByte

    W25Q256: 256Mbit / 32MByte

硬件电路

image-20250210173113908

W25Q64框图

image-20250210173159265

Flash操作注意事项

写入操作时:

  • 写入操作前,必须先进行写使能
  • 每个数据位只能由1改写为0,不能由0改写为1
  • 写入数据前必须先擦除,擦除后,所有数据位变为1
  • 擦除必须按最小擦除单元进行
  • 连续写入多字节时,最多写入一页的数据,超过页尾位置的数据,会回到页首覆盖写入
  • 写入操作结束后,芯片进入忙状态,不响应新的读写操作

读取操作时:

  • 直接调用读取时序,无需使能,无需额外操作,没有页的限制,读取操作结束后不会进入忙状态,但不能在忙状态时读取

SPI外设

简介

  • STM32内部集成了硬件SPI收发电路,可以由硬件自动执行时钟生成、数据收发等功能,减轻CPU的负担
  • 可配置8位/16位数据帧、高位先行/低位先行
  • 时钟频率: fPCLK / (2, 4, 8, 16, 32, 64, 128, 256)
  • 支持多主机模型、主或从操作
  • 可精简为半双工/单工通信
  • 支持DMA兼容I2S协议
  • STM32F103C8T6 硬件SPI资源:SPI1、SPI2

SPI框图

image-20250210173530908

SPI基本结构

image-20250210173612857

代码演示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#include "stm32f10x.h"                  // Device header
#include "MySPI.h"
#include "W25Q64_Ins.h"

void W25Q64_Init(void)
{
MySPI_Init();
}

void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{
MySPI_Start();
MySPI_SwapByte(W25Q64_JEDEC_ID);
*MID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);
*DID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);
*DID <<= 8;
*DID |= MySPI_SwapByte(W25Q64_DUMMY_BYTE);
MySPI_Stop();
}

void W25Q64_WriteEnable(void)
{
MySPI_Start();
MySPI_SwapByte(W25Q64_WRITE_ENABLE);
MySPI_Stop();
}

void W25Q64_WaitBusy(void)
{
uint32_t Timeout;
MySPI_Start();
MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);
Timeout = 100000;
while ((MySPI_SwapByte(W25Q64_DUMMY_BYTE) & 0x01) == 0x01)
{
Timeout --;
if (Timeout == 0)
{
break;
}
}
MySPI_Stop();
}

void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count)
{
uint16_t i;

W25Q64_WriteEnable();

MySPI_Start();
MySPI_SwapByte(W25Q64_PAGE_PROGRAM);
MySPI_SwapByte(Address >> 16);
MySPI_SwapByte(Address >> 8);
MySPI_SwapByte(Address);
for (i = 0; i < Count; i ++)
{
MySPI_SwapByte(DataArray[i]);
}
MySPI_Stop();

W25Q64_WaitBusy();
}

void W25Q64_SectorErase(uint32_t Address)
{
W25Q64_WriteEnable();

MySPI_Start();
MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);
MySPI_SwapByte(Address >> 16);
MySPI_SwapByte(Address >> 8);
MySPI_SwapByte(Address);
MySPI_Stop();

W25Q64_WaitBusy();
}

void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count)
{
uint32_t i;
MySPI_Start();
MySPI_SwapByte(W25Q64_READ_DATA);
MySPI_SwapByte(Address >> 16);
MySPI_SwapByte(Address >> 8);
MySPI_SwapByte(Address);
for (i = 0; i < Count; i ++)
{
DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE);
}
MySPI_Stop();
}

END